Operation CHARM: Car repair manuals for everyone.

Operation






OPERATION




Torque Converter Fluid Operation







The converter impeller (driving member), which is integral to the converter housing and bolted to the engine drive plate, rotates at engine speed. The converter turbine (driven member), which reacts from fluid pressure generated by the impeller, rotates and turns the transmission input shaft.


TURBINE


As the fluid that was put into motion by the impeller blades strikes the blades of the turbine, some of the energy and rotational force is transferred into the turbine and the input shaft. This causes both of them (turbine and input shaft) to rotate in a clockwise direction following the impeller. As the fluid is leaving the trailing edges of the turbine's blades it continues in a "hindering" direction back toward the impeller. If the fluid is not redirected before it strikes the impeller, it will strike the impeller in a direction that would tend to slow it down.


STATOR





Stator Operation







Torque multiplication is achieved by locking the stator's over-running clutch to its shaft. Under stall conditions the turbine is stationary and the oil leaving the turbine blades strikes the face of the stator blades and tries to rotate them in a counterclockwise direction. When this happens the overrunning clutch of the stator locks and holds the stator from rotating. With the stator locked, the oil strikes the stator blades (1) and is redirected into a "helping" direction before it enters the impeller. This circulation of oil from impeller to turbine, turbine to stator, and stator to impeller, can produce a maximum torque multiplication of about 1.75:1. As the turbine begins to match the speed of the impeller, the fluid that was hitting the stator in such as way as to cause it to lock-up is no longer doing so. In this condition of operation, the stator begins to free wheel and the converter acts as a fluid coupling.


TORQUE CONVERTER CLUTCH (TCC)


The torque converter clutch is hydraulically applied or released when fluid is feed or vented from the hydraulic circuit by the torque converter control (TCC) solenoid on the valve body. The torque converter clutch is controlled by the Powertrain Control Module (PCM). The torque converter clutch engages in FOURTH gear, and in THIRD gear under various conditions, such as when the O/D switch is OFF, or when the vehicle is cruising on a level surface after the vehicle has warmed up. The torque converter clutch can also be engaged in the MANUAL SECOND gear position if high transmission temperatures are sensed by the PCM. The torque converter clutch may disengage momentarily when an increase in engine load is sensed by the PCM, such as when the vehicle begins to go uphill or the throttle pressure is increased.