P0106
DTC P0106
Diagnostic Instructions
* Perform the Diagnostic System Check - Vehicle Diagnostic System Check - Vehicle prior to using this diagnostic procedure.
* Review Strategy Based Diagnosis Strategy Based Diagnosis for an overview of the diagnostic approach.
* Diagnostic Procedure Instructions Diagnostic Procedure Instructions provides an overview of each diagnostic category.
DTC Descriptor
DTC P0106
- Manifold Absolute Pressure (MAP) Sensor Performance
Diagnostic Fault Information
Typical Scan Tool Data
Circuit Description
The manifold absolute pressure (MAP) sensor measures the pressure inside the intake manifold. Pressure in the intake manifold is affected by engine speed, throttle opening, air temperature, barometric pressure (BARO); and where equipped turbocharger output. A diaphragm within the MAP sensor is displaced by the pressure changes that occur from the varying load and operating conditions of the engine. The sensor translates this action into electrical resistance.
The MAP sensor wiring includes 3 circuits. The engine control module (ECM) supplies a regulated 5 volts to the sensor on a 5 V reference circuit. The ECM supplies a ground on a low reference circuit. The MAP sensor provides a signal voltage to the ECM, relative to the pressure changes, on the MAP sensor signal circuit. The ECM converts the signal voltage input to a pressure value.
Under normal operation the greatest pressure that can exist in the intake manifold is at ignition ON, engine OFF, which is equal to the BARO. Where equipped, a turbocharger can increase the pressure above BARO, when the vehicle is operated at wide-open throttle (WOT). The lowest manifold pressure occurs when the vehicle is idling or decelerating. The ECM monitors the MAP sensor signal for pressure outside of the normal range.
Conditions for Running the DTC
* DTCs P0102, P0103, P0107, P0108, P0111, P0112, P0113, P0114, P0116, P0117, P0118, P0128, P0335, P0336, P2227, P2228, P2229, and P2230 are not set.
* The engine speed is between 575 and 6,600 RPM.
* The ECT Sensor is between -7 and +125°C (+19 and +257°F).
* The IAT Sensor is between -20 and +125°C (-4 and +257°F).
* This DTC runs continuously when the above conditions are met.
Conditions for Setting the DTC
The engine control module (ECM) detects that the MAP sensor pressure is not within range of the calculated pressure that is derived from the system of models, for greater than 0.5 S.
Action Taken When the DTC Sets
DTC P0106 is a Type B DTC.
Conditions for Clearing the MIL/DTC
DTC P0106 is a Type B DTC.
Reference Information
Schematic Reference
Engine Controls Schematics [1][2]Electrical Diagrams
Connector End View Reference
Component Connector End Views Sunshade - Left
Electrical Information Reference
* Circuit Testing Circuit Testing
* Connector Repairs Connector Repairs
* Testing for Intermittent Conditions and Poor Connections Testing for Intermittent Conditions and Poor Connections
* Wiring Repairs Wiring Repairs
DTC Type Reference
Powertrain Diagnostic Trouble Code (DTC) Type Definitions Powertrain Diagnostic Trouble Code (DTC) Type Definitions
Scan Tool Reference
Control Module References Control Module References for scan tool information
Special Tools
GE-23738-A - Vacuum Pump
For equivalent regional tools, refer to Special Tools Tools and Equipment.
Circuit/System Verification
1. Ignition ON.
2. Verify that DTC P0641, P0651, P0697, or P06A3 is not set.
• If any of the DTCs are set
Refer to DTC P0641, P0651, P0697, or P06A3 (ECM) Powertrain Management (ECM) for further diagnosis.
• If none of the DTCs are set
3. If you were sent here from DTC P0068, P0101, P0121, P0236, or P1101; refer to Circuit/System Testing.
4. Ignition ON.
5. Verify the scan tool Throttle Body Idle Airflow Compensation parameter is less than 90%.
• If 90% or greater
Refer to Throttle Body Cleaning Procedures.
• If less than 90%
6. Verify the scan tool Throttle Body Sensors 1 and 2 Agree/Disagree parameter displays Agree while performing the Throttle Sweep Test with a scan tool.
• If Disagree
Refer to DTC P0121-P0123, P0222, P0223, P16A0-P16A2, or P2135 (LCV) P0121DTC P0121-P0123, P0222, P0223, P16A0-P16A2, or P2135 (LTG) P0121 for further diagnosis.
• If Agree
7. Determine the current vehicle testing altitude.
8. Verify the scan tool MAP Sensor pressure parameter is within the range specified in the Altitude Versus Barometric Pressure Electrical Specifications table.
• If the MAP Sensor parameter is not in range
Refer to Circuit/System Testing.
• If the MAP Sensor parameter is in range
9. Verify the engine is equipped with a turbocharger.
• If not equipped with a turbocharger
Refer to Step 12.
• If equipped with a turbocharger
10. Verify the scan tool Boost Pressure Sensor parameter is within the range specified in the Altitude Versus Barometric Pressure Electrical Specifications table.
• If the Boost Pressure Sensor parameter is not in range
Refer to DTC P0236 P0236 for further diagnosis.
• If the Boost Pressure Sensor parameter is within range
11. Verify the scan tool Boost Pressure Sensor parameter decreases after starting the engine.
• If the Boost Pressure Sensor parameter does not decrease
Refer to DTC P0236 P0236 for further diagnosis.
• If the Boost Pressure Sensor parameter does decrease
12. Engine idling, verify the scan tool MAP Sensor pressure parameter is between 26-52 kPa (3.8-7.5 psi) and changes with accelerator pedal input.
• If not between 26-52 kPa (3.8-7.5 psi) or does not change
Refer to Circuit/System Testing.
• If between 26-52 kPa (3.8-7.5 psi) and changes
13. Verify the scan tool MAF Sensor g/s parameter changes smoothly and gradually as the engine speed is increased and decreased while performing the actions listed below.
1. Engine idling
2. Perform the scan tool snapshot function.
3. Increase the engine speed slowly to 3,000 RPM and then back to idle.
4. Exit from the scan tool snapshot and review the data.
5. Observe the MAF Sensor parameter frame by frame with a scan tool.
• The MAF Sensor parameter does not change smoothly and gradually
Refer to DTC P0101 P0101.
• The MAF Sensor parameter changes smoothly and gradually
14. Operate the vehicle within the Conditions for Running the DTC. You may also operate the vehicle within the conditions that you observed from the Freeze Frame/Failure Records data.
15. Verify a DTC does not set.
• If any DTC sets
Refer to Circuit/System Testing.
• If no DTCs set
16. All OK.
Circuit/System Testing
1. Verify the integrity of the entire air induction system and verify that none of the following conditions exist:
* Any damaged components
* Improper operation of turbocharger wastegate actuator or bypass valve; where equipped
* Loose or improper installation of the turbocharger and the charge air cooler, including the flexible ductwork; where equipped
* An air flow restriction
* Any vacuum leak
* Improperly routed vacuum hoses
* A restriction in the MAP sensor port, or the BARO port; where equipped
* Proper operation of the positive crankcase ventilation system
* Missing, restricted or leaking exhaust components. Refer to Symptoms - Engine Exhaust Symptoms - Engine Exhaust.
* Engine mechanical condition; for example: low compression or incorrect timing chain installation. Refer to Symptoms - Engine Mechanical (LCV) Symptoms - Engine MechanicalSymptoms - Engine Mechanical (LTG) Symptoms - Engine Mechanical.
• If a condition is found
If a condition is found, repair or replace the component as appropriate.
• If no condition is found
2. Ignition OFF, disconnect the harness connector at the B74 Manifold Absolute Pressure sensor.
3. Ignition OFF and all vehicle systems OFF. It may take up to 2 minutes for all vehicle systems to power down. Test for less than 2 ohms between the low reference circuit terminal 2 and ground.
• If 2 ohms or greater
1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
2. Test for less than 2 ohms in the low reference circuit end to end.
• If 2 ohms or greater, repair the open/high resistance in the circuit.
• If less than 2 ohms, replace the K20 Engine Control Module.
• If less than 2 ohms
4. Ignition ON.
5. Test for 4.8-5.2 V between the 5 V reference circuit terminal 1 and ground.
• If less than 4.8 V
1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
2. Test for infinite resistance between the 5 V reference circuit and ground.
• If less than infinite resistance, repair the short to ground on the circuit.
• If infinite resistance
3. Test for less than 2 ohms in the 5 V reference circuit end to end.
• If 2 ohms or greater, repair the open/high resistance in the circuit.
• If less than 2 ohms, replace the K20 Engine Control Module.
Note: If the signal circuit is shorted to a voltage the engine control module or the sensor may be damaged.
• If greater than 5.2 V
1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
2. Ignition ON, test for less than 1 V between the 5 V reference circuit and ground.
• If 1 V or greater, repair the short to voltage on the circuit.
• If less than 1 V, replace the K20 Engine Control Module.
• If between 4.8-5.2 V
6. Ignition ON, verify the scan tool MAP Sensor parameter is less than 0.5 V.
• If 0.5 V or greater
1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
2. Ignition ON, test for less than 1 V between the signal circuit terminal 3 and ground.
• If 1 V or greater, repair the short to voltage on the circuit.
• If less than 1 V, replace the K20 Engine Control Module.
• If less than 0.5 V
7. Ignition OFF, install a 3 A fused jumper wire between the signal circuit terminal 3 and the 5 V reference circuit terminal 1.
8. Ignition ON, verify the scan tool MAP voltage parameter is greater than 4.5 V.
• If 4.5 V or less
1. Ignition OFF, disconnect the harness connector at the K20 Engine Control Module.
2. Remove the jumper wire, test for infinite resistance between the signal circuit terminal 3 and ground.
• If less than infinite resistance, repair the short to ground on the circuit.
• If infinite resistance
3. Test for less than 2 ohms in the signal circuit end to end.
• If 2 ohms or greater, repair the open or high resistance in the circuit.
• If less than 2 ohms, replace the K20 Engine Control Module.
• If greater than 4.5 V
9. Test or replace the B74 Manifold Absolute Pressure sensor.
Component Testing
Note: You must perform the Circuit/System Testing in order to verify the integrity of the MAP sensor circuits before proceeding with the Component Testing.
Skewed Sensor Test
1. Ignition OFF, remove the B74 Manifold Absolute Pressure sensor from the engine. Connect the harness to the sensor, if disconnected.
2. Ignition ON, apply 17 kPa (5.0 inHg) of vacuum to the B74 Manifold Absolute Pressure sensor, with the GE-23738-A - Vacuum Pump. Verify the scan tool MAP pressure parameter decreases between 13-21 kPa (1.8-3.0 psi).
• If the parameter does not decrease between 13-21 kPa (1.8-3.0 psi).
Replace the B74 Manifold Absolute Pressure sensor.
• If the parameter does decrease between 13-21 kPa (1.8-3.0 psi).
3. Apply 34 kPa (10.0 inHg) of vacuum to the B74 Manifold Absolute Pressure sensor, with the GE-23738-A - Vacuum Pump. Verify the scan tool MAP pressure parameter decreases between 30-38 kPa (4.4-5.5 psi).
• If the parameter does not decrease between 30-38 kPa (4.4-5.5 psi).
Replace the B74 Manifold Absolute Pressure sensor.
• If the parameter does decrease between 30-38 kPa (4.4-5.5 psi).
4. All OK.
Erratic Signal Test
1. Ignition OFF, remove the B74 Manifold Absolute Pressure sensor and disconnect the harness.
2. Install a 3 A fused jumper wire between the 5 V reference circuit terminal 1 of the sensor and the sensor harness.
3. Install a jumper wire between the low reference circuit terminal 2 of the sensor and ground.
4. Install a jumper wire to the signal circuit terminal 3 of the sensor.
5. Connect a DMM between the jumper wire and ground.
6. Ignition ON, observe the DC voltage on the DMM. Slowly apply between 0-15 kPa of vacuum to the sensor with the GE-23738-A - Vacuum Pump. Verify the voltage changes, without any spikes or dropouts and is between 0.2-4.9 V.
• If not between 0.2-4.9 V or has spikes or dropouts
Replace the B74 Manifold Absolute Pressure sensor.
• If between 0.2-4.9 V and there are no spikes or dropouts
7. All OK.
Repair Instructions
Perform the Diagnostic Repair Verification Verification Tests after completing the repair.
* Manifold Absolute Pressure Sensor Replacement Service and Repair.
* Control Module References Control Module References for engine control module replacement, programming, and setup