Principles Of Operation
Interior Lighting
Principles of Operation
NOTE: The Smart Junction Box (SJB) is also known as the Generic Electronic Module (GEM).
The SJB supplies voltage to the interior lighting system. The interior lighting system illuminates the courtesy lamps to enhance visibility of the interior while a vehicle door is ajar (or a request from the instrument panel dimmer switch is received), and the vehicle speed is less than 15 km/h (9 mph). The SJB controls all interior lighting functions and timing by monitoring inputs from the door ajar switches, liftgate ajar switch, liftgate glass ajar switch, instrument panel dimmer switch, and vehicle speed.
Interior Lamp Arbitrator
The interior lamp arbitrator (part of the SJB programming) chooses between the interior lighting, the interior mode, the interior lighting delay, the illuminated entry, the illuminated exit, the battery saver, and the alarm flash processing to determine which feature has precedence of activating and deactivating the interior lamps.
Battery Saver
The battery saver is internal to the SJB and provides automatic shut off of the demand lamps (vanity lamps, map lamps and glove compartment lamp) and courtesy lamps after a time-out period in order to save battery voltage. A timer in the SJB is started when the ignition is turned to the OFF position. When the time-out period for the lamps has elapsed, the voltage is automatically shutoff to the lamps by the battery saver. While the battery saver has voltage disabled, if the ignition is turned to any position other than off, any door or liftgate/glass becomes ajar, the UNLOCK button of the Remote Keyless Entry (RKE) transmitter is pressed, the instrument panel dimmer switch is placed in the DOME position, the battery saver restores voltage and starts the timer again.
NOTE: Time out is 1 minute if the vehicle has less than 80 km (50 miles).
The battery saver time-outs are as follows:
- Courtesy lamps if the dome lamp is off and the liftgate/liftgate glass is closed = 10 minutes
- Courtesy lamps if the dome lamp is on or the liftgate/liftgate glass is open = 30 minutes
- Demand lamps = 30 minutes
Field-Effect Transistor (FET) Protection
The SJB utilizes a Field-Effect Transistor (FET) protective circuit strategy for many of its outputs (for example, a headlamp output circuit). Output loads (current level) are monitored for excessive current (typically short circuits) and are shut down (turns off the voltage or ground provided by the module) when a fault event is detected. A continuous DTC is stored at the fault event and a cumulative counter is started.
When the demand for the output is no longer present, the module resets the FET circuit protection to allow the circuit to function. The next time the driver requests a circuit to activate that has been shut down by a previous short (FET protection) and the circuit remains shorted, the FET protection shuts off the circuit again and the cumulative counter advances.
When the excessive circuit load occurs often enough, the module shuts down the output until a repair procedure is carried out. Each FET protected circuit has 3 predefined levels of short circuit tolerance based on the harmful effect of each circuit fault on the FET and the FET's ability to withstand it. A module lifetime level of fault events is established based upon the FET's durability. If the total tolerance level is determined to be 600 fault events, the 3 predefined levels would be 200, 400 and 600 fault events.
When each tolerance level is reached, the continuous DTC that was stored on the first failure cannot be cleared by a command to clear the continuous DTCs. The module does not allow this code to be cleared or the circuit restored to normal operation until a successful self-test proves that the fault has been repaired. After the self-test has successfully completed (no on-demand DTCs present), the continuous DTC automatically clears and the circuit function returns.
When the first or second level is reached, the continuous DTC (associated with the short circuit) sets along with DTC B106E. These DTCs can be cleared using the module on-demand self-test, then the Clear DTC operation on the scan tool (if the on-demand test shows the fault corrected). The module never resets the fault event counter to zero and continues to advance the fault event counter as short circuit fault events occur.
If the number of short circuit fault events reach the third level, then DTCs B106F and B1342 set along with the associated continuous DTC. This DTC cannot be cleared and the module must be replaced.
The SJB FET protected output circuits for the instrument panel illumination system are the courtesy and demand lamp system output circuits.